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A recovery creep model, based upon previous theories by McLean and co-workers, 
has been developed for creep in materials hardened by a second phase. According to 
the model the increased creep strength in these materials is caused by a decrease in 
the recovery rate, and this in turn is due to a decrease of the driving force for the recovery 
process and of the mobility of the climbing dislocations involved in the process. It is 
shown that the model can account for the very large stress-dependence of the creep-rate 
often found for alloys hardened by a second phase. Another support for the model is 
the observation that changes in the creep-rate for materials in different states of 
precipitation-hardening are entirely due to changes in the recovery rate. 

1. Introduct ion 
Ansell and Weertman [1] appear to have been 
the first to develop a quantitative theory for high- 
temperature creep of alloys hardened by a second 
phase. They assumed that the rate-controlling 
process is the climb of dislocations over the 
second-phase particles. Depending on the stress 
level, the details of this process may differ 
slightly. At low stresses they suggested that the 
dislocations climb over the particles with no 
pile-up or bowing of dislocations at the particles, 
and for this case they arrived at the following 
expression of the creep rate: 

~r~b3 D 

= 2 k T d  2 (1) 

where ~ is the applied stress, b the Burgers vector, 
D the self-diffusion coefficient, k Boltzmann's 
constant, T the temperature, and d the particle 
size. At stresses larger than Fb/,~, where /x is 
the shear modulus and )t the inter-particle 
spacing, the dislocations will move past particles 
by bowing out and pinching off loops around the 
particles. This occurs until the back stress 
exerted by the loops around the particles prevents 
new dislocations from bowing out between the 
particles. The steady-state creep rate will then 
be governed by the rate at which the dislocation 
loop nearest to the particle climbs to the top of 
the particle and is annihilated; the other loops 
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will then move inwards, and a new loop will 
form by bowing and pinching of an arrested 
dislocation. This process gives an equation 

2rr oah 2 D 
e -- a F3 k-------T (2) 

From these expressions we would expect that 
the creep rate/stress relation obeys a fourth 
power law at high stresses, and a first power law 
at low stresses. This type of stress-dependence is 
not in agreement with experiments. In general, 
the stress exponent is much higher than 4 for 
dispersion-hardened alloys. For thoriated nickel 
a value of 40 has been found [2], for thoriated 
Ni /20~ Cr values between 10 and 25 [3], and 
for an aluminium SAP alloy a value above 10 [4]. 
Ansell and Lenel [5] obtained for another SAP 
alloy an exponent of 4 in the high stress region, 
in conformity with the theory described above. 
However, in the low stress range below about 
1.2 kg/mm 2 (~0.6 • 10 -3/xm), where the stress- 
dependence of the creep rate according to the 
theory should decrease, instead it increased, and 
the exponent became rapidly larger than 4. As 
regards precipitation-hardened alloys, e.g. the 
precipitation-hardenable nickel base alloys, there 
appear to be very few direct experimental studies 
on the stress-dependence of the creep rate. 
Reported experiments [6] yield values from about 
4 to 7. The special class of creep-resistant 
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austenitic stainless steels usually alloyed with 
titanium or niobium, that are strengthened by 
particles precipitating during the creep process, 
also seem to have strongly stress-dependent 
creep rates. Evaluation of creep results from a 
15 ~ Cr/15 ~ Ni/Mo/Ti/B steel [7] gives a stress 
exponent of about 9. 

Hence, the conclusion one can draw from the 
experimental results for dispersion- and precipi- 
tation-hardened alloys available at present is 
that the stress-dependence of the creep rate may 
vary widely between different materials and 
structural conditions. There are also indications 
that the stress-dependence might increase at low 
stresses. The present theories by Weertman and 
Ansell are apparently not able to account for 
this behaviour. In the following section a model 
for high-temperature creep in materials hardened 
by a second phase will be described. Essentially, 
it is based upon the model for recovery creep 
in pure metals and solid solution alloys proposed 
by McLean [8] and McLean and Hale [9]. As 
we shall see, such a model may account for the 
observed stress-dependence of the creep rate and 
furthermore it appears, from quite general 
arguments, that such a recovery-controlled creep 
model is necessary for materials containing 
precipitates. 

2. Recovery Creep Applied to Materials 
Hardened by a Second Phase 

2.1. Recovery Creep in Pure Metals and 
Solid Solutions 

The most widely accepted concept of high- 
temperature creep in pure metals and solid 
solutions seems to be the one proposed by 
McLean and co-workers [8-10]. In agreement 
with direct observations, the model assumes that 
the dislocations formed during creep exist in a 
three-dimensional network. During primary 
creep the dislocation density increases; this 
implies that the rate of recovery cannot catch 
up with the rate of strain-hardening, and this 
causes the creep-rate to decrease. As the mesh- 
size in the dislocation network decreases with 
increasing dislocation density the recovery 
accelerates, and eventually a stage is reached 
where there is a balance between strain-harden- 
ing and recovery. The creep-rate in this steady 
state is given by 

es = r /h  (3) 

where r is the recovery rate, &riOt, and h the 
strain-hardening, ee/Oe. This stationary creep 

process may be regarded as consecutive events 
of recovery and strain-hardening of the disloca- 
tion network. McLean and Hale assume that the 
junctions of the network provide the strength [9 ]. 
Some of these junctions, most probably those 
connected with the longest dislocation links, 
will break as a result of thermal fluctuations. 
These links will move a certain distance before 
being held up by the network, thus giving a 
strain increment but also some strain-hardening, 
since the total length of dislocations con- 
comitantly increases. 

The recovery which takes place is a decrease in 
the dislocation density, and consequently the 
mesh-size of the dislocation network increases. 
Eventually this causes some junctions to become 
sufficiently weak to break free, and the consecu- 
tive events of recovery and strain-hardening can 
repeat themselves. 

2.2. General Arguments for a Recovery 
Creep Model in Alloys Hardened by a 
Second Phase 

The dislocations which have climbed according 
to the Ansell-Weertman model for dispersion- 
hardened alloys [1] subsequently glide, meet 
dislocations of opposite sign, and annihilate. 
Thereby the total dislocation length has been 
reduced, i.e. recovery has taken place. The rate 
of this recovery has not been considered in detail 
by Ansell and Weertman. 

Such a description of creep is not likely to be 
valid in materials hardened by a second phase, 
because of the following general arguments. 
Since it is the slowest step that determines the 
rate of a process consisting of sequential events, 
Ansell and Weertman obviously assume the 
recovery step to be faster than the dislocation 
climb over the particles. However, such a 
situation would, at the best, give a constant creep- 
rate from the very beginning of the creep test, 
firstly because the time for the dislocations to 
surmount the particles will not change as 
creep proceeds, secondly because the product of  
the number of dislocation sources and the 
plastic strain produced by each loop expanded 
according to the model is constant (cf [1 ] p. 842). 
Such behaviour, of course, contradicts all 
experimental experience, since alloys hardened 
by a second phase, like all pure metals and solid 
solutions, exhibit a primary creep range with 
decreasing creep-rate [6]. If  anything, one 
would probably expect the product of number 
of  sources and the strain produced by each loop 
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to increase in the primary stage where the 
dislocation density increases, and consequently 
this would rather make the creep rate increase. 
(If every link in the dislocation network is a 
potential source, the density of sources would be 
proportional to p/(p)-l/~ = p~l~, where p is 
dislocation density, and if the area swept by the 
loops equals the area of the meshes in the net- 
work, which is proportional to [1/(pl/2)] 2 = l/p, 
the product of these two factors is proportional 
to (p)1/2). Hence we do not think that the Ansell- 
Weertman model adequately accounts for the 
creep process in the secondary stage. Instead, 
it seems as if it would be more successful in 
explaining the creep-rates at short times in the 
primary stage before the dislocation density has 
appreciably increased. 

Now, when we have seen that a creep model, 
in which the strain-hardening step is slower than 
the recovery step and is thus rate-controlling, is 
unable to account for the transition from primary 
to secondary creep, we shall consider the situation 
when the recovery step is the slowest. As 
mentioned above, the Ansell-Weertman equations 
are likely to give the creep-rate in the beginning 
of the primary stage, since the obstacles in the 
form of the second-phase particles exist from the 
very beginning, and therefore this model can 
work fully effectively from the start. When 
recovery is slower than strain-hardening, the 
dislocation density will increase steadily. This 
implies that the density of obstacles for dislocation 
movement increases. Alternatively, one may say 
that the link length in the dislocation network 
decreases. Such obstacles due to interaction of 
dislocations can indeed be very strong; attractive 
junctions in dislocation networks may have a 
strength of several hundred eV [9]. This implies 
that eventually the dislocation density will be 
large enough for the creep-rate to be controlled 
by the link size, which is related to the effective 
strength of the junctions in the dislocation 
network. From that stage and onwards the 
creep-rate will gradually decrease as dislocation 
density increases. The fact that the creep-rate 
does not continue to decrease implies that the 
recovery rate increases with decreasing mesh-size 
of the dislocation network. Eventually a stage 
will be reached where the recovery rate will 
exactly balance the strain-hardening and the 
creep-rate will be constant. 

As we see, such a description is completely 
analogous to the recovery creep model for pure 
metals and solid solutions [8, 9]. One might 
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then ask what gives the precipitation-hardened 
alloys their creep resistance. Obviously the 
second-phase particles will impede the growth 
of the mesh-size in the dislocation network, and 
hence recovery and creep-rate will be slowed 
down. Therefore, in such a recovery creep model 
the important effect of the particles is that they 
retard recovery, which is the rate-controlling 
step. The details of this effect will be treated in 
the two following paragraphs. 

2.3. The Recovery and Strain-Hardening 
Steps 

The growth of the average mesh-size (Rm) of 
the dislocation network constitutes the recovery 
process in the present case. This process occurs 
essentially by climb of dislocations and simple 
reasoning shows that the driving force is 
inversely proportional to Rm [11 ]. The resulting 
growth-rate of the average mesh can be written 

d R m / d t  = M " r / R m  (4) 

The factor "r/Rm, where r is the line tension of 
the dislocations, is the driving force for the 
growth process, and the proportionality factor M 
can be regarded as the mobility of a climbing 
dislocation. 

Normal grain growth is dealt with in an exactly 
analogous manner, and one obtains an equivalent 
equation for the rate of grain growth. It is well 
established that precipitates and inclusions 
retard grain growth considerably; this effect has 
also been given a theoretical explanation by 
Zener [12] and has later been considered in more 
detail by Hillert [13]. One assumes that the 
grain-boundary experiences a back stress from 
the particles which hold up the boundary, and 
therefore the driving force determined by the 
grain radius should be decreased by the amount 
of this back stress. 

Because of the analogy between grain growth 
and growth of the meshes in a dislocation net- 
work, it seems that we can apply this treatment 
to the growth of a dislocation network which is 
impeded by second-phase particles. For the 
general case, the retarding force will be denoted 
by r . z, where z depends on number and sizes 
of the impeding particles, and also on the exact 
nature of the interaction between the particle 
and the dislocation. At present it does not seem 
possible to make a realistic estimate of the 
magnitude of this interaction. By analogy with 
the treatment by Hillert [13] the growth-rate 
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of  the average mesh size is then given by 

dRm M~" 
dt -- 2 Rm (1 -- z Rm) 2 =- 

M~-Rm ( 1 ) 2  
2 Ymm - -  z (5) 

It is well established, both experimentally and 
theoretically, that the flow stress at low tempera- 
tures is proportional to the square root of the 
dislocation density, p [14]. The same type of 
relation has been verified for iron strained under 
creep conditions [9]. By the aid of this relation 
between creep stress and dislocation density in 
the secondary stage, equation 5, and the relation 
Rm = (p)-a/~ between average mesh size, Rm, 
and dislocation density, we can now deduce 
an expression for the recovery rate r = Oa/~t. 

r = ~ (r -- z (6) 

Beside the effect of second-phase particles on the 
driving force for the recovery of the dislocation 
network, we should also expect an effect upon the 
mobility, M, of the climbing dislocations. Since 
the dislocations will be held up at the particles, 
the overall mobility will be determined by the 
local mobility at the particles. For example, if 
the dislocations at least partially climb inside the 
particles, a decrease of the mobility could be 
due to slower self-diffusion in the second-phase 
particles; the large observed activation energies 
for the creep-rate in SAP, TD nickel, and 
precipitation-hardened nickel alloys have been 
explained in this manner [15]. If  the dislocation 
has to climb around the particle, as is assumed 
in the Ansell-Weertman theory, the overall 
mobility will be governed by the time it takes to 
climb to the top of the particles, and hence 
mobility will in this case be inversely proportional 
to the particle-size d. From electron-micrographic 
observations in an Ni/Cr/A1 alloy, Gibbons [16] 
concluded that dislocations both climb around 
and shear off precipitate particles. In an actual 
case the mobility of climbing dislocations may 
therefore be decreased by both mechanisms des- 
cribed above. However, irrespective of mechanism, 
it is likely that the applied stress enhances the 
climb rate by a small influence on the activation 
energy. If, following McLean [8], we assume 
that this effect increases linearly with stress, the 
recovery can be written as 

- -  z ( 7 )  

Except for the impeding influence from the 
second-phase particles on the driving force and 
the mobility, the treatment above is identical 
with that by McLean [8] for pure metals and 
solid solutions. 

The fact that recovery was slower than strain- 
hardening means that, although the slip of a 
dislocation link that has broken free will be 
slowed down by climb over intervening particles, 
this process will be faster than the recovery. This 
also means that the strain increment, OE, for a 
certain decrease in internal stress by recovery, 
&r, will only be limited by the density of dis- 
location obstacles, i.e. dislocation density. 
Hence, the strain-hardening &r/0r during creep 
will be essentially the same in a material hardened 
by a second phase as in a pure metal or solid 
solution. At ambient temperatures the stress- 
strain relation for plastic deformation often 
obeys a parabolic law; this gives a strain- 
hardening that is inversely proportional to the 
stress. Determinations of the strain-hardening 
on creep-tested material, which are very difficult 
to perform, indicate that strain-hardening may 
be somewhat more strongly stress-dependent, 
for nickel, h oc ~-~.7, and for aluminium, 
h oc ~-~.~ [101. If, for the sake of simplicity, we 
here assume that the rate of strain-hardening is 
inversely proportional to the stress, we get the 
following expression for the creep-rate: 

~c ~a - z  (8) 

2.4. Comparison with Experimental Results 
According to the discussion in the previous 
section, changes in creep-rate for materials with 
varying states of hardening, e.g. different volume- 
fractions of second-phase particles, should 
entirely be due to changes in recovery rate. 
Recent creep and recovery experiments by 
Gibbons [16] on precipitation-hardenedNi/Cr/Al 
alloys at constant stress show that there is a 
proportional relation between creep-rate and 
recovery rate for materials with different content 
and dispersion of the y' precipitate. This result 
strongly supports the recovery creep model for 
materials hardened by second-phase particles. 

Fig. 1 shows measurements of the dislocation 
density for steady-state creep at 700 ~ C in an 
austenitic 20~ Cr/35~o Ni stainless steel 
containing y' precipitates [17], and the data 
points fall approximately on a straight line in a 
cr versus ~/p graph as was assumed in the previous 

599 



R, L A G N E B O R G  

section. However, the ~ versus ~/p relation 
exhibits a non-zero stress intercept and the 
complete relation may be written as 

= + 4f, (9) 
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Figure I Creep stress versus /z b~e/p for a 20% Cr/35%/ 
0.5% Ti]0.5% AI alloy creep-tested at 700 ~ C. /~ is shear 
modulus, b Burgers vector, and p dislocation density in 
the secondary stage. ~- is the shear stress and equals 
half the tensile stress. Each point in the graph represents 
a count of the number of dislocations over a length of 
about 0.1 cm [17] 

where % is the stress intercept, o~ is a constant, 
F the shear modulus, and b the Burgers vector. 
Apparently e0 is related to the impeding effect 
of the 7' precipitates during creep. In fact it 
appears that cr 0 is directly connected with z, 
which was a measure of the retarding force from 
the second phase on the climbing dislocation 
during recovery. If we employ the original 
equation for the recovery rate (equation 4) and 
the actual relation between stress and dislocation 
density (equation 9) and go through the same 
treatment as in the previous section, we arrive 
at the following expression for the creep-rate: 

oc cr 2 (10) cqxb cxFb ] 
This expression, except for the interchange of the 
exponents between the two factors, is analogous 
to equation 8. From this it follows that we can 
expect z to be approximately equal to %/oqxb. 

To illustrate the effect of second-phase 
particles, equation 8 has been plotted schematic- 
ally in fig. 2 for assumed values of the proportion- 
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ality constant and z. If the second-phase particles 
only decreased the driving force for the recovery 
process, the stress versus creep-rate curve would 
be shifted from curve A to B, if A corresponds 
to a material free of particles. The decrease in 
mobility of climbing dislocations due to the 
presence of second-phase particles will further 
retard the creep-rate. The proportionality con- 
stant in equation 8 will thereby be lowered by a 
certain constant factor and this results in a final 
stress/creep-rate curve C at still lower creep-rates 
and running parallel with curve B. Evidently the 
decrease in the driving force for the recovery 
causes the creep-rate to become gradually more 
stress-dependent. Fig. 2 shows that for stresses 
just above the critical, which is the stress that 
gives zero creep-rate according to equation 8, 
the exponents in the usual power law, i oc e~, 
may decrease from 11 to 5 for an increase of 
the stress by a factor of 4. Hence, depending on 
the stress range, the stress sensitivity of the 
creep-rate for a particular material might vary 
considerably. 

It is suggested that this is the explanation of 
the considerable scatter in the observed stress 
exponents for dispersion- and precipitation- 
hardened alloys. Furthermore, it is clear that 
equation 8 is able to account for the observed 
increase of the stress sensitivity of the creep-rate 
with decreasing stress in SAP [5]. One might 
ask why such an increase in stress sensitivity has 
not been observed more frequently. One obvious 
reason is that rather few accurate measurements 
of the stress/creep-rate relation exist for mater- 
ials hardened by a second phase, and, moreover, 
the measurements made are usually confined 
to a narrow stress range where a change in the 
stress sensitivity will be difficult to detect. 
Furthermore, if equation 10 describes the actual 
stress/creep-rate relation more adequately than 
equation 8, the change in stress sensitivity of the 
creep-rate with stress will be even more gradual 
than shown in fig. 2. 

However, there is also a real effect that will 
tend to diminish the increasing stress sensitivity 
of the creep-rate with decreasing stress. In 
materials in which coalescence of the second- 
phase particles is not completely negligible, 
there will be time, at sufficiently small creep- 
rates, for some increase of the interparticle 
spacing due to coalescence. This decreases z in 
equation 8 somewhat, and therefore counteracts 
the increase of stress sensitivity. Hence, in such a 
case, the very high exponents close to the 



R E C O V E R Y  C R E E P  I N  M A T E R I A L S  H A R D E N E D  BY A S E C O N D  P H A S E  

4~ 
u} 

E r 

O} 
0 _J 

n : l l  

(Tcritical 
ilog 2f 

| log 10 

Logarithm of creep rate 

Figure 2 Schematic figure of the stress/creep-rate relation in a double logarithmic graph showing the effect of 
second-phase particles according to equation 8. Curve A represents a material free of particles, and C a material 
containing particles. For full explanation of the implication of the three curves A, B, and C, see text. 

critical stress (fig. 2) will not be attained. In 
precipitation-hardened materials, in which 
coalescence cannot be entirely disregarded, it is 
thought that this will diminish the stress 
sensitivity at low creep-rates, even so much that 
no deflection as shown in fig. 2 occurs. However, 
in dispersion-hardened alloys, coalescence may 
be considered to be completely negligible because 
of the extremely low solubility of the oxide 
particles in the material, and the deflection in the 
stress/creep-rate curve shown in fig. 2 is therefore 
more likely to exist in these alloys. The observ- 
ation by Ansell and Lenel [5] that the stress- 
dependence of the creep-rate in SAP  increases 
with decreasing stresses supports these arguments. 

It should also be borne in mind that at 
sufficiently high and low creep-rates other 
mechanisms, not directly depending on the 
existence of second-phase particles, may in 
certain cases come into play and eliminate the 
variable stress sensitivity. For instance, Sherby 
and Burke [18] state that the relation between 
stress and creep-rate for creep-rates below 

= 109D obeys a linear law, ~ oc ~, and for 
creep-rates above i = 109D an exponential law, 

oc exp (constant ~). Here D is the self-diffusion 
coefficient. The linear law is possibly related to 

diffusion creep and the exponential law to a 
high stress-induced vacancy production; both 
mechanisms may work equally well in materials 
with or without precipitates. 

3. S u m m a r y  and Conclusions 
The current creep theories for alloys hardened 
by a second phase cannot rationalise certain 
features of the creep behaviour adequately. It 
is shown that a recovery creep model based upon 
the theory by McLean and co-workers [8-10] 
and modified with respect to the second-phase 
particles provides a satisfactory explanation of 
creep in these materials. In such a model the 
creep process is described as consecutive events 
of recovery and strain-hardening, where the 
recovery is the rate-controlling step. An addition 
of second-phase particles then reduces the creep- 
rate only through a decrease of the recovery rate. 
The recovery process consists of the growth of 
the meshes in the dislocation network. This is 
analogous to normal grain growth, and the 
impeding effect of particles on the latter can be 
used to explain the recovery of the dislocation 
network in the presence of second-phase 
particles. The particles retard the recovery 
partly through a decrease of the driving force 
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of  the recovery process and partly through a 
decrease in the mobility o f  climbing dislocations. 

I t  is shown that  such a model  is consistent 
"with the large variations in the stress-dependence 
fo r  the creep-rate that  have been observed for  
dispersion- and precipitat ion-hardened alloys. 
I t  is also able to explain the increasing stress 
sensitivity with decreasing stress observed in 
S A P .  The recovery creep model  in materials 
hardened by a second phase is supported by 
recent results f rom creep in precipitation- 
hardened alloys, which showed that  the creep-rate 
changed exclusively through a change in recovery 
rate when the state o f  hardening was altered. 
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A d d e n d u m  

I f  we assume already f rom the start of  the analysis 
in section 2.3. that  the e - F b @  relation has a 
stress intercept c~Fbz, equations 6 to 8 and 10 
will change slightly. The implication o f  equa- 
t ion 5, as used in this work, is that  in the driving 
force factor  ( ' r R m / 2 ) ( 1 / R m -  z) ~, values o f  
Rm corresponding to the relation between e 
and Rm with no friction stress (o~Fbz), 
e = o~Fb. 1 /Rm,  should be used; the impeding 
effect of  the second-phase particles on the rate 
of  recovery is taken care of  by the term z in 
the driving force. F r o m  the e - F b @  relation 
we obtain, de /d t  = (oqzb/Rm ~) ( - -  dRm/dt).  In  
this expression Rm should be substituted by e as 
given by e = c~Fb (z + 1/Rm), i.e. the expression 
containing the stress intercept. Similarly, the 
introduct ion of  the friction stress changes the 
strain hardening coefficient, de/dE, to be pro- 
port ional  to 1/(or - ~Fbz) .  Hence, the recogni- 
t ion of  the friction stress, cqzbz, f rom the very 
beginning of  the analysis leads to the following 
modifications of  equations 6 to 8 and 10. 

�9 - - z ( 6 a )  
r z - 2  - (7 

(+ ; r oc - z (7a) 

oc  - z ( 8 a )  

( e  e~  '~' (lOa) 
oc e oL-Fb oqxb ] 

These modifications result in a more gradual 
change of  the stress sensitivity of  the creep-rate. 
None  of  the conclusions drawn on the present 
paper  are, however, changed by these modifi- 
cations. 
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